Color Independent Components Based SIFT Descriptors for Object/Scene Classification
نویسندگان
چکیده
In this paper, we present a novel color independent components based SIFT descriptor (termed CIC-SIFT) for object/scene classification. We first learn an efficient color transformation matrix based on independent component analysis (ICA), which is adaptive to each category in a database. The ICA-based color transformation can enhance contrast between the objects and the background in an image. Then we compute CIC-SIFT descriptors over all three transformed color independent components. Since the ICA-based color transformation can boost the objects and suppress the background, the proposed CIC-SIFT can extract more effective and discriminative local features for object/scene classification. The comparison is performed among seven SIFT descriptors, and the experimental classification results show that our proposed CIC-SIFT is superior to other conventional SIFT descriptors. key words: CIC-SIFT descriptor, object/scene classification, ICA-based transformation
منابع مشابه
New image descriptors based on color, texture, shape, and wavelets for object and scene image classification
This paper presents new image descriptors based on color, texture, shape, and wavelets for object and scene image classification. First, a new three Dimensional Local Binary Patterns (3D-LBP) descriptor, which produces three new color images, is proposed for encoding both color and texture information of an image. The 3D-LBP images together with the original color image then undergo the Haar wa...
متن کاملColor orthogonal local binary patterns combination for image region description
Visual content description is a key issue for machine-based image analysis and understanding. A good visual descriptor should be both discriminative enough and computationally efficient while possessing some properties of robustness to viewpoint changes and lighting condition variations. In this paper, we propose several new local descriptors based on color orthogonal local binary patterns comb...
متن کاملKernel Descriptors for Visual Recognition
The design of low-level image features is critical for computer vision algorithms. Orientation histograms, such as those in SIFT [16] and HOG [3], are the most successful and popular features for visual object and scene recognition. We highlight the kernel view of orientation histograms, and show that they are equivalent to a certain type of match kernels over image patches. This novel view all...
متن کاملNew colour SIFT descriptors for image classification with applications to biometrics
This paper first presents a new oRGB-SIFT descriptor, and then integrates it with other color SIFT features to produce the novel Color SIFT Fusion (CSF) and the Color Grayscale SIFT Fusion (CGSF) descriptors for image classification with special applications to biometrics. Classification is implemented using a novel EFM-KNN classifier, which combines the Enhanced Fisher Model (EFM) and the K Ne...
متن کاملA New Color SIFT Descriptor and Methods for Image Category Classification
We first propose in this paper a new oRGB-SIFT descriptor, and then integrate it with other color SIFT features to produce the Color SIFT Fusion (CSF) and the Color Grayscale SIFT Fusion (CGSF) methods for image category classification. The effectiveness of our proposed representation and methods are evaluated on three representative, large scale, and grand challenging datasets. The experimenta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 93-D شماره
صفحات -
تاریخ انتشار 2010